Writing ImageJ Plugins—A Tutorial

Werner Bailer*
ijtutorial@fh-hagenberg.atf

Upper Austria University of Applied Sciences
Dept. of Media Technology and Design
Hagenberg, Austriat

Version 1.71
Based on ImageJ Release 1.36
July 2, 2006

Contents

1 Getting Started 3
1.1 About Imaged 3
1.2 About this Tutorial 3
1.3 Setting up your Environment 4
1.4 Updating ImageJ 5

2 The Plugin Concept of ImagelJ 5
2.1 Macros vs. Plugins 5
2.2 Plugins Folder—Installing Plugins 6
2.3 Integrating Plugins into the ImageJ GUIL 6
2.4 Developing Plugins inside ImageJ o oo 6
2.5 Typesof Plugins e 6
2.6 Imterfaces e 6
2.7 PluglnFrame e 7
2.8 The Codeina New Plugin. 7
2.9 A Sample Plugin (Example) o o 00000 10
2.10 Compiling and Running Plugins 11

3 ImageJ Class Structure 12

4 Image Representation in ImagelJ 14
4.1 Typesof Images e 14
4.2 Tmages 15

*The author is now with the Institute of Information Systems and Information Management at Joanneum
Research GmbH. in Graz, Austria.

TThis document can be downloaded from www.fh-hagenberg.at/mtd/depot/imaging/imagej

tFachhochschule Hagenberg, Medientechnik und -design

Version 1.71

4.3 Processors i e 16
4.4 Accessing Pixel Values 16
4.5 Regions of Interest L 18
4.6 Creating New Images 19
4.7 Displaying Images 21
4.8 Image Type Conversion 21
4.9 ColorInverter Plugln (Example) 23
4.10 Stacks 25
4.11 StackAverage Plugln (Example) 27
4.12 Additional Reference 28
5 ImagelJ’s Utility Methods 33
5.1 (Error) Messages i 34
5.2 ImageJ Window, Status Bar and Progress Bar 34
5.3 Userinput e 36
5.4 Calling Menu Commands, Macros and Plugins 36
5.5 MessageTest Plugln (Example) 36
5.6 More Utilities 37
6 Windows 38
6.1 GenericDialog 38
6.2 FrameDemo Plugln (Example) 40
6.3 ImageWindow 42
6.4 ImageCanvas 43
6.5 Subclasses of ImageWindow oL 44
6.6 Event Handling (Example) 44
7 Advanced Topics 46
7.1 Importing/Exporting Movies 46
7.2 Writing I/O plugins 47
7.3 Using the ImageJ Library outside ImageJ 51
8 Troubleshooting 54
8.1 ImageJ runs out of memory. oL oL L 54
8.2 A plugin is not displayed in ImageJ’s plugins menu. 54
8.3 When you call the “Plugins/Compile and Run ...” menu 55
8.4 ImagelJ throws an exception in a web application (Unix/Linux) 55
9 Frequently Asked Questions 55
9.1 How to change the URL for the sample images 55
9.2 How to include user plugins when running ImageJ as applet? 55
10 Further Resources 56
10.1 API Documentation, Source Code 56
10.2 Plugins Page oL 56
10.3 ImageJ Mailing List Lo 56
10.4 Java Resources e 56
10.5 Image Processing Resources L o oL 57

Writing ImageJ Plugins—A Tutorial 2

Version 1.71

1 Getting Started

1.1 About ImageJ!

ImageJ is a public domain Java image processing program inspired by NIH Image for the
Macintosh. It runs, either as an online applet or as a downloadable application, on any
computer with a Java 1.1 or later virtual machine. Downloadable distributions are available
for Windows, Mac OS, Mac OS X and Linux.

It can display, edit, analyze, process, save and print 8-bit, 16-bit and 32-bit images. It
can read many image formats including TIFF, GIF, JPEG, BMP, DICOM, FITS and “raw”.
It supports “stacks”, a series of images that share a single window. It is multithreaded, so
time-consuming operations such as image file reading can be performed in parallel with other
operations.

It can calculate area and pixel value statistics of user-defined selections. It can measure
distances and angles. It can create density histograms and line profile plots. It supports
standard image processing functions such as contrast manipulation, sharpening, smoothing,
edge detection and median filtering.

It does geometric transformations such as scaling, rotation and flips. Image can be zoomed
up to 32:1 and down to 1:32. All analysis and processing functions are available at any
magnification factor. The program supports any number of windows (images) simultaneously,
limited only by available memory.

Spatial calibration is available to provide real world dimensional measurements in units
such as millimeters. Density or gray scale calibration is also available.

ImageJ was designed with an open architecture that provides extensibility via Java plu-
gins. Custom acquisition, analysis and processing plugins can be developed using ImagelJ’s
built in editor and Java compiler. User-written plugins make it possible to solve almost any
image processing or analysis problem.

ImageJ is being developed on Mac OS X using its built in editor and Java compiler,
plus the BBEdit editor and the Ant build tool. The source code is freely available. The
author, Wayne Rasband (wayne@codon.nih.gov), is at the Research Services Branch, National
Institute of Mental Health, Bethesda, Maryland, USA.

1.2 About this Tutorial

This tutorial is an introduction to writing plugins for ImageJ. It discusses the concept of
plugins in ImageJ and its onboard tools for plugin development. It starts with the discussion
of the code skeleton of a new plugin and the sample plugins that are part of the ImageJ
distribution, and covers those parts of the ImageJ API, which are essential for writing plugins,
with a special focus on the image representation. A reference of the most important classes,
methods and constants is provided and some more advanced topics are discussed.

In order to use this tutorial, a basic knowledge of the Java programming language is
required. (Resources for Java beginners can be found in section 10.4). You should also try to
get familiar with the use of ImageJ before you start writing plugins. The ImageJ documenta-
tion can be found at http://rsb.info.nih.gov/ij/docs, including links to further documentation
resources.

!Description taken from http://rsb.info.nih.gov/ij/docs/intro.html

Writing ImageJ Plugins—A Tutorial 3

Version 1.71

1.3 Setting up your Environment

For running ImageJ you need the ImageJ class and configuration files, a Java Runtime En-
vironment (JRE) and—for compiling your own plugins—a Java compiler with the required
libraries, as for example included in the Java 2 SDK Standard Edition (J2SE) from Sun
Microsystems. Depending on the ImageJ distribution you are using, some or all of this may
already be included.

1.3.1 Installing ImageJ

The latest distribution of ImageJ can be downloaded from http://rsb.info.nih.gov/ij/download.
html.

In the following the installation of ImageJ will be described briefly for different operating
systems. More detailed and up-to-date installation instructions can be found at http://rsb.
info.nih.gov/ij/docs/install.

If you already have a JRE (and a Java compiler) installed on your computer and you are
familiar with Java, you just need to download the ImageJ class and configuration files which
are available as a ZIP archive. To run ImageJ, add ij. jar to your classpath and execute class
ij.ImageJ. This also works for all operating systems for which there is no specific ImagelJ
distribution but for which a Java runtime environment is available.

Windows

The Windows version is available with installer, both with and without a Java Runtime
Environment (JRE).
Mac OS
To run ImageJ on Mac OS you need the Macintosh Runtime for Java (MRJ). It can be
downloaded from http://www.apple.com/java. MRJ requires Mac OS 8.1 or later. MRJ is
preinstalled on new Macs. Installation instructions can be found on the MRJ download page.
The ImageJ distribution is a self-extracting archive (If it does not expand automatically
after downloading, use e.g. Stufflt Expander). Double-click the “ImageJ” icon in the newly
created folder to run it.

Mac OS X

Download the Mac OS X tar. gz file and double-click it to expand. Double-click the “ImageJ”
icon to run ImagelJ.

Linuzx 286
Download the Linux x86 tar.gz file, which contains Sun’s Java Runtime Environment, and
extract it using e. g.

tar xvzf 1j136-x86.tar.gz

and execute the run script in the ImageJ directory.

1.3.2 Installing the Java Compiler

Installing a Java compiler is only necessary if it is not included in the ImageJ distribution
or provided by the operating system. In any case (also if you are using an operating system
which is not mentioned here but for which a Java compiler is available) you can use a Java
compiler of your choice to compile your plugins (e.g. J2SE SDK from Sun Microsystems,
which you can download from http://www.javasoft.com).

Writing ImageJ Plugins—A Tutorial 4

Version 1.71

Details on compiling plugins can be found in Section 2.10.
Windows

The ImageJ distribution for Windows includes a Java compiler which allows you to compile
plugins inside ImageJ.

Mac OS

In addition to the MRJ you need the MRJ SDK. It can be downloaded from http://developer.
apple.com/java. Run the installer you have downloaded. After the installation it is possible
to compile plugins inside ImageJ.

Mac OS X
A Java compiler is included in Mac OS X Java, so you can compile plugins inside ImageJ.
Linux

The ImageJ distribution for Linux includes a Java compiler which allows you to compile
plugins inside ImageJ.

1.4 Updating ImagelJ

You can update ImageJ by replacing the ImageJ JAR file (ij.jar). The latest version is
available at http://rsb.info.nih.gov/ij/upgrade. Just replace your existing ij. jar file with the
one you downlaoded. The ij. jar file can be found directly in your ImageJ folder.

Note: The ImageJ JAR file also contains the configuration file IJProps.txt. If you want
to save your settings, extract the file from your old ij.jar and replace it in the new one.
You can edit JAR files with most ZIP utilities (e.g. WinZip).

2 The Plugin Concept of ImagelJ

2.1 Macros vs. Plugins

The functions provided by ImageJ’s built-in commands can be extended by user-written
code in the form of macros and plugins. These two options differ in their complexity and
capabilities.

Macros are an easy way to execute a series of ImageJ commands. The simplest way
to create a macro is to call using “Plugins/Macros/Record” and execute the commands to
be recorded. The macro code can be modified in the built-in editor. The ImageJ macro
language contains a set of control structures, operators and built-in functions and can be
used to call built-in commands and macros. A reference of the macro language can be found
at http://rsb.info.nih.gov/ij/developer/macro/macros.html.

Plugins are a much more powerful concept than macros and most of ImageJ’s built-in
menu commands are in fact implemented as plugins. Plugins are implemented as Java classes,
which means that you can use all features of the Java language, access the full ImageJ API
and use all standard and third-party Java APIs in a plugin. This opens a wide range of
possibilities of what can be done in a plugin. The most common uses of plugins are filters
performing some analysis or processing on an image or image stack and I/O plugins for
reading/writing not natively supported formats from/to file or other devices. But as you can
see when looking at the plugins listed on the ImageJ plugins page (cf. Section 10.2), there are
many other things you can do with plugins, such as rendering graphics or creating extensions
of the ImageJ graphical user interface.

Writing ImageJ Plugins—A Tutorial 5

Version 1.71

2.2 Plugins Folder—Installing Plugins

ImageJ user plugins have to be located in a folder called plugins, which is a subfolder of
the ImageJ folder. But only class files in the plugins folder with at least one underscore in
their name appear automatically in the “Plugins” menu. Since version 1.20 it is also possible
to create subfolders of the plugins folder and place plugin files there. The subfolders are
displayed as submenus of ImageJ’s “Plugins” menu.

To install a plugin (e.g. one you have downloaded from the ImageJ plugins page) copy
the .class file into the plugins folder or one of its subfolders. The plugin will appear in
the plugin menu (or one of its submenus) the next time you start ImageJ. You can add it to
a menu and assign a shortcut to it using the “Plugins/ Shortcut/ Install plugin...”
this case, the plugin will appear in the menu without restarting ImageJ.

Alternatively, if you have the source code of a plugin, you can compile and run it from
within ImageJ. More about compiling and running plugins can be found in Section 2.10.

You can specify the plugins directory using the plugins.dir property. This can be
done by adding an argument like -Dplugins.dir=c:\plugindirectory to the commandline
calling ImageJ. Depending on the type of installation you are using, this modification is made
in the run script, the ImagelJ.cfg file or the shortcut calling ImageJ.

menu. In

2.3 Integrating Plugins into the ImageJ GUI

Like commands, plugins can be accessed via hot-keys. You can create a new hot-key by
selecting “Create Shortcut” from the menu “Plugins / Shortcuts”.

A string with arguments can be passed to a plugin. Installing a plugin using the menu
command “Plugins / Shortcuts / Install Plugin ...” places the plugin into a selected menu,
assigns a hot-key and passes an argument.

“Plugins / Shortcuts / Remove ...” removes a plugin from the menu.

2.4 Developing Plugins inside ImagelJ

ImageJ provides an integrated editor for macros and plugins, which can not only be used to
modify and edit code, but also to compile and run plugins.

The “Plugins / New ...” command displays a dialog that lets the user specify a name for
the new plugin and select to create a new macro or one of three types of plugins. The types
of plugins and the code that is created for a new plugin are discussed below.

The “Plugins / Edit ...” command displays a file open dialog and opens the selected
plugin in a text editor.

2.5 Types of Plugins

There are basically two types of plugins: those that do not require an image as input (imple-
menting the interface PlugIn) and plugin filters, that require an image as input (implementing
the interface PlugInFilter). A PlugInFrame is a plugin that runs in its own window.

2.6 Interfaces

2.6.1 Plugln

This interface has just one method:

Writing ImageJ Plugins—A Tutorial 6

Version 1.71

void run(java.lang.String arg)
This method runs the plugin, what you implement here is what the plugin actually
does. arg is a string passed as an argument to the plugin, and it can also be an
empty string. You can install plugins more than once, so that each of the commands
can call the same plugin class with a different argument.

2.6.2 PluglInFilter

This interface also has a method

void run(ImageProcessor ip)
This method runs the plugin, what you implement here is what the plugin actually
does. It takes the image processor it works on as an argument. The processor can
be modified directly or a new processor and a new image can be based on its data,
so that the original image is left unchanged. The original image is locked while the
plugin is running. In contrast to the PlugIn interface the run method does not take
a string argument. The argument can be passed using

int setup(java.lang.String arg, ImagePlus imp)
This method sets up the plugin filter for use. The arg string has the same function
as in the run method of the PlugIn interface. You do not have to care for the
argument imp—this is handled by ImageJ and the currently active image is passed.
The setup method returns a flag word that represents the filters capabilities (i.e.
which types of images it can handle).

2.7 PluglnFrame

A PlugInFrame is a subclass of an AWT frame that implements the PlugIn interface. Your
plugin will be implemented as a subclass of PlugInFrame.
There is one constructor for a PlugInFrame. It receives the title of the window as argument:

PlugInFrame(java.lang.String title)
As this class is a plugin, the method

void run(java.lang.String arg)
declared in the PlugIn interface is implemented and can be overwritten by your
plugin’s run method.
Of course all methods declared in java.awt.Frame and its superclasses can be overwritten.
For details consult the Java AWT API documentation.

2.8 The Code in a New Plugin

After creating a new plugin, a code skeleton for the new plugin is created. For all types of
plugins, a list of import statements for the packages of the ImageJ API are created:

import ij.*;

import ij.process.x*;
import ij.gui.x*;
import java.awt.x;
import ij.plugin.*;

Writing ImageJ Plugins—A Tutorial 7

Version 1.71

The packages of the ImageJ API are discussed in Section 3. Depending on the type of
plugin, the package in the last import statement is ij.plugin.*, ij.plugin.filter.* or
ij.plugin.frame.*.

2.8.1 Plugln

For each plugin a new class is created, which implements the interface of the respective plugin
type:

public class My_Plugin implements PlugIn {
/] ...
}

A plugin of type PlugIn only has a run method

public void run(String arg) {
IJ.showMessage ("My_Plugin","Hello world!");
}

In this sample code, a utility method is called, which displays a message box.

2.8.2 PluglInFilter

Similarly, a filter plugin implements the appropriate interface:

public class My_Filter_Plugin implements PlugInFilter {
ImagePlus imp;

/...
+

In addition, the plugin declares an instance variable, which will hold the image on which
the filter plugin works. The setup method is called when the plugin is instantiated. An
argument string and an image are passed:

public int setup(String arg, ImagePlus imp) {
this.imp = imp;
return DOES_ALL;

}

In the method’s code, the image argument is stored in the instance variable, and the capability
flag of the filter plugin is returned. The following capability flags are defined in PlugInFilter:

static int DOES_16 The plugin filter handles 16 bit grayscale images.
static int DOES_32 The plugin filter handles 32 bit floating point grayscale images.
static int DOES_8C The plugin filter handles 8 bit color images.

static int DOES_8G The plugin filter handles 8 bit grayscale images.

Writing ImageJ Plugins—A Tutorial 8

Version 1.71

static int DOES_ALL The plugin filter handles all types of images.
static int DOES_RGB The plugin filter handles RGB images.

static int DOES_STACKS The plugin filter supports stacks, ImageJ will call it for each slice
in a stack.

static int DONE If the setup method returns DONE the run method will not be called.
static int NO_CHANGES The plugin filter does not change the pixel data.

static int NO_IMAGE REQUIRED The plugin filter does not require an image to be open.
static int NO_UNDO The plugin filter does not support undo.

static int ROI_REQUIRED The plugin filter requires a region of interest (ROI).

static int STACK REQUIRED The plugin filter requires a stack.

static int SUPPORTS_MASKING Plugin filters always work on the bounding rectangle of the
ROL. If this flag is set and there is a non-rectangular ROI, ImageJ will restore the pixels
that are inside the bounding rectangle but outside the ROI.

The run method receives the image processor (cf. Section 4.3) of the image and performs
the actual function of the plugin:

public void run(ImageProcessor ip) {
ip.invert();
imp.updateAndDraw() ;
IJ.wait(500);
ip.invert();
imp.updateAndDraw () ;

}

The example code inverts the image, updates the display, waits for a half second, and again
inverts the image and updates the display.

2.8.3 PlugInFrame

The frame plugin extends the PlugInFrame class, which implements the PlugIn interface:

public class My_Plugin_Frame extends PlugInFrame {
/...
b

A PlugInFrame is derived from a Java AWT window. In the sample code the constructor for
the class is implemented:

public My_Plugin_Frame() {
super ("Plugin_Frame") ;
TextArea ta = new TextArea(1l5, 50);
add(ta);

Writing ImageJ Plugins—A Tutorial 9

Version 1.71

pack();
GUI.center(this);
show () ;

}

First, the constructor of the base class is called with the title of the window as argument.
Then a text area is created and added to the window, and the window is displayed.

2.9 A Sample Plugin (Example)

After looking at the code skeletons created for new plugins, we analyze the code of one of
the sample plugins that come with ImageJ. You can find them in the plugins folder after
installing ImageJ. Inverter_ is a plugin that inverts 8 bit grayscale images.

Here we import the necessary packages, ij for the basic ImagelJ classes, ij.process for
image processors and the interface ij.plugin.filter.PlugInFilter is the interface we have
to implement for a plugin filter.

import ij.*;

import ij.plugin.filter.PlugInFilter;
import ij.process.x*;

import java.awt.x*;

Note: Do not use a package statement inside plugin classes—they have to be in the default
package!

The name of this plugin has the necessary underscore appended. It needs an image as input,
so it has to implement PlugInFilter:

public class Inverter_ implements PlugInFilter {

What comes next is the method for setting up the plugin. For the case that we get
“about” as argument, we call the method showAbout that displays an about dialog. In that
case we return DONE because we do not want the run method to be called. In any other case
we return the capability flags for this plugin: It works on 8 bit grayscale images, also on
stacks and in the case that there is a ROI (region of interest) defined the plugin will just
work on the masked region (ROI).

public int setup(String arg, ImagePlus imp) {
if (arg.equals("about")) {
showAbout () ;
return DONE;
}
return DOES_8G+DOES_STACKS+SUPPORTS_MASKING;
}

The run method implements the actual function of the plugin. We get the processor of
the original image. Then we get the image as an array of pixels from the processor—as it is
a 8 bit grayscale image (= 256 possible values) we can use a byte array. Note that the pixel
array is one-dimensional, containing one scan line after the other. Then we read the width
of the image (because we need to know the length of a scan line) and the bounding rectangle
of the ROI.

Writing ImageJ Plugins—A Tutorial 10

Version 1.71

public void run(ImageProcessor ip) {
byte[] pixels = (bytel[]l)ip.getPixels();
int width = ip.getWidth();
Rectangle r = ip.getRoi();

We now declare two variables to avoid calculating the position in the one dimensional image
array every time. In the outer loop we go from the first line of the ROI to its last line.
We calculate the offset (= position of the first pixel of the current scan line) and go in the
inner loop from the left most pixel of the ROI to its right most pixel. We assign the current
position to i and invert the pixel value by subtracting its value from 255.

int offset, i;
for (int y=r.y; y<(r.y+r.height); y++) {
offset = y*width;
for (int x=r.x; x<(r.x+r.width); x++) {
i = offset + x;
pixels[i] = (byte) (255-pixels[i]);

}

showAbout uses the static method showMessage from class IJ to display a text in a message
box. The first parameter specifies its title, the second the message text.

void showAbout() {
IJ.showMessage("About Inverter_...",
"This sample plugin filter inverts 8-bit images. Look\n" +
"at the 'Inverter_.java' source file to see how easy it is\n" +
"in ImageJ to process non-rectangular ROIs, to process\n" +
"all the slices in a stack, and to display an About box."

)

2.10 Compiling and Running Plugins

Now that we have looked at one of the sample plugins we want to compile and run it.
If the Java runtime environment you are using includes a Java compiler you can compile
and run plugins inside ImageJ. There are basically two ways:

e Using the menu “Plugins / Compile and run...”, which opens a file dialog which lets

you select a . java file which will be compiled into a class file and executed as plugin.

2

e Using “File / Compile and run...
run the code in the editor window.

in the built-in plugin editor which will compile and

If your plugin requires other libraries (JARs) than ImageJ and the standard Java libraries,
you have to make sure that they can be found by the Java compiler. The simplest way
is to put them into the ImageJ/jre/lib/ext directory of your ImageJ installation (or to
/Library/Java/Extensions on Mac OS X). If you are using another Java compiler, make
sure that the libraries are included in the classpath by adding them to the list of libraries of
the —cp command line option of the compiler.

Writing ImageJ Plugins—A Tutorial 11

Version 1.71

3 ImageJ Class Structure

This section contains a brief overview of the class structure of ImageJ. It is by far not complete,
just the most important classes for plugin programming are listed and briefly described. A
UML class diagram is available at http://rsb.info.nih.gov/ij/developer/diagram.html.
ij
ImageJApplet
ImageJ can be run as applet or as application. This is the applet class of ImageJ.
The advantage of running ImagelJ as applet is that it can be run (remotely) inside
a browser, the biggest disadvantage is the limited access to files on disk because of
the Java applet security concept, if the applet is not signed. See also http://rsb.info.
nih.gov/ij/applet/.
ImageJ
The main class of the ImageJ application. This class contains the program’s main
entry point, and the ImageJ main window.
Executer
A class for executing menu commands in separate threads (without blocking the rest
of the program).

1J
A class containing many utility methods (discussed in Section 5).

ImagePlus
The representation of an image in ImageJ, which is based on the ImageProcessor
class (see Section 4).

ImageStack
An ImageStack is an expandable array of images (see Section 4).

WindowManager
This class manages the list of open windows.

ij.gui

ProgressBar
A bar in the ImageJ main window that informs graphically about the progress of a
running operation.

GenericDialog

A modal dialog that can be customized and called on the fly, e.g. for getting user
input before running a plugin (see Section 6).

HTMLDialog

A modal dialog that displays formatted HTML text.
MessageDialog

A modal dialog that displays an information message.
YesNoCancelDialog

A modal dialog with a message and “Yes”, “No” and “Cancel” buttons.
SaveChangesDialog

A modal dialog with a message and “Don’t Save”, “Cancel” and “Save” buttons.

Writing ImageJ Plugins—A Tutorial 12

Version 1.71

NewImage

A class for creating a new image of a certain type from scratch.

Roi
A class representing a region of interest of an image. If supported by a plugin, it
can process just the ROI and not the whole image. There are several subclasses for
specific types of ROIs, which are discussed in 4.5.
ImageCanvas
A canvas derived from java.awt.Canvas on which an image is painted (see Section
6).
ImageWindow
A frame derived from java.awt.Frame that displays an image (see Section 6).
StackWindow
An ImageWindow designed for displaying stacks (see Section 6).
HistogramWindow
An ImageWindow designed for displaying histograms (see Section 6).
PlotWindow
An ImageWindow designed for displaying plots (see Section 6).
ij.io
This package contains classes for reading/decoding and writing/encoding image files.
ij.macro
The package implements the parser for the macro language and the built-in macro func-
tions.
ij.measure
Contains classes for measurements.
ij.plugin

1]

Most ImageJ menu commands are implemented as plugins and can therefore be
found in the classes of ij.plugin and its subpackages.

PlugIn
This interface has to be implemented by plugins, that do not require an image as
input (see Section 2).

Converter
Implements a method for conveniently converting an ImagePlus from one type to
another (see Section 4.8)

.plugin.filter

PlugInFilter

This interface has to be implemented by plugins, that require an image as input (see
Section 2).

Writing ImageJ Plugins—A Tutorial 13

Version 1.71

ij.plugin.frame
PlugInFrame
A window class that can be subclassed by a plugin (see Section 2).
ij.process
ImageConverter
A class that contains methods for converting images from one image type to another.
ImageProcessor

An abstract superclass of the image processors for certain image types. An image
processor provides methods for actually working on the image data (see Section 4).

StackConverter

A class for converting stacks from one image type to another.

StackProcessor

A class for processing image stacks.

4 Image Representation in ImageJ

When we looked at the sample plugin in Section 2.9 we saw that images are represented by
ImagePlus and ImageProcessor objects in ImageJ. In this section we take a closer look at
the way images are handled by ImageJ. Methods that are not discussed in the text but are
of some importance for writing plugins can be found in the reference in Section 4.12.

4.1 Types of Images

Images are large arrays of pixel values. But it is important to know how these pixel values
must be interpreted. This is specified by the type of the image. ImageJ knows five image

types:

8 bit grayscale images can display 256 grayscales, a pixel is represented by a byte vari-
able.

8 bit color images can display 256 colors that are specified in a lookup table (LUT), a
pixel is represented by a byte variable.

16 bit grayscale images can display 65,536 grayscales, a pixel is represented by a short
variable.

RGB color images can display 256 values per channel, a pixel is represented by an int
variable.

32 bit images are floating point grayscale images, a pixel is represented by a float variable.

For information about conversion between different image types, see Section 4.8. D. Sage
and M. Unser (Biomedical Imaging Group, Swiss Federal Institute of Technology Lausanne)
contributed a package called ImageAccess, which unifies access to images regardless of data
types.2

?More information can be found at http://bigwww.epfl.ch/teaching/iplabsite/.

Writing ImageJ Plugins—A Tutorial 14

Version 1.71

4.2 Images

An ImagePlus is an object that represents an image. It is based on an ImageProcessor,
a class that holds the pixel array and does the actual work on the image. The type of the
ImageProcessor used depends on the type of the image. The image types are represented
by constants declared in ImagePlus:

COLOR_256 A 8 bit color image with a look-up table.
COLOR_RGB A RGB color image.

GRAY16 A 16 bit grayscale image.

GRAY32 A 32 bit floating point grayscale image.

GRAY8 A 8 bit grayscale image.

ImageJ displays images using a class called ImageWindow. It handles repainting, zooming,
changing masks etc.
To construct an ImagePlus use one of the following constructors:

ImagePlus ()

Default constructor, creates a new empty ImagePlus and does no initialization.

ImagePlus(java.lang.String pathOrURL)
Constructs a new ImagePlus, loading the Image from the path or URL specified.
ImagePlus(java.lang.String title, java.awt.Image img)

Constructs a new ImagePlus based on a Java AWT image. The first argument is
the title of the ImageWindow that displays the image.

ImagePlus(java.lang.String title, ImageProcessor ip)
Constructs a new ImagePlus that uses the specified ImageProcessor. The first
argument is the title of the ImageWindow that displays the image.

ImagePlus(java.lang.String title, ImageStack stack)
Constructs a new ImagePlus from an ImageStack. The first argument is the title
of the ImageWindow that displays the image.
The type of an ImagePlus can be retrieved using

int getType()
Similar methods exist for getting the image dimension, the title (i.e. name of the Image-
Window that displays this image), the AWT image that represents the ImagePlus and the file
information:

int getHeight()

int getWidth()
java.lang.String getTitle()
java.awt.Image getImage()

ij.io.FileInfo getFileInfo()
The AWT image on which the ImagePlus is based and the image’s title title can be set using

void setImage(java.awt.Image img)

void setTitle(java.lang.String title)

Writing ImageJ Plugins—A Tutorial 15

Version 1.71

An ImagePlus can have a list of additional properties that can be defined by the user. They
are indexed using a string and can be any type of object. These properties can be read and
set using the methods:

java.util.Properties getProperties()

Returns this image’s Properties.

java.lang.0bject getProperty(java.lang.String key)
Returns the property associated with key.

void setProperty(java.lang.String key, java.lang.0bject value)

Adds a key-value pair to this image’s properties.

4.3 Processors

Each image is based on an image processor. The type of the processor depends on the type of
the image. You can get and set the image processor using these two methods of an ImagePlus:

ImageProcessor getProcessor()

Returns a reference to the image’s ImageProcessor.

void setProcessor(java.lang.String title, ImageProcessor ip)
Sets the image processor to the one specified.

When working with plugin filters you do not have to care about retrieving the processor
from the ImagePlus, it is passed as argument to the run method.
ImageProcessor is an abstract class. Depending on the type of the image we use a subclass
of ImageProcessor. There are five of them:

ByteProcessor
Used for 8 bit grayscale and color images. It has a subclass called BinaryProcessor
for grayscale images that only contain the pixel values 0 and 255.

ShortProcessor

Used for 16 bit grayscale images.

ColorProcessor
Used for 32 bit integer images (RGB with 8 bit per channel).

FloatProcessor

Used for 32 bit floating point images.

4.4 Accessing Pixel Values
To work with the image we need access to its pixels. We know how to get the image’s
ImageProcessor. Retrieving the pixel values can be done by using an ImageProcessor’s
java.lang.0Object getPixels()
method. It returns a reference to this image’s pixel array.

As the type of the array returned depends on the image type we need to cast this array
to the appropriate type when we get it:

int[] pixels = (int[]) myProcessor.getPixels()

Writing ImageJ Plugins—A Tutorial 16

Version 1.71

This example would work for an RGB image. As you have noticed we get back a one-
dimensional array. It contains the image scanline by scanline. To convert a position in this
array to a (x,y) coordinate in an image, we need at least the width of a scanline.

The width and height of an ImageProcessor can be retrieved using these methods:

int getHeight()

int getWidth()

Now we have everything to iterate through the pixel array. As you have seen in the sample
plugin code this can be done using two nested loops.

Some cases need a bit more explanation: Reading pixels from ByteProcessor, Short-
Processor and from ColorProcessor.

Java’s byte data type is signed and has values ranging from —128 to 127, while we would
expect a 8 bit grayscale image to have values from 0 to 255. If we cast a byte variable to
another type we have to make sure, that the sign bit is eliminated. This can be done using
a binary AND operation (&):

int pix = pixels[i] & Oxff;
pixels[i] = (byte) pix;

It’s the same with Java’s short data type, which is also signed and has values ranging
from —32, 768 to 32,767, while we would expect a 16 bit grayscale image to have values from
0 to 65,535. If we cast a short variable to another type we have to make sure that the sign
bit is eliminated. This can again be done using a binary AND operation:

int pix = pixels[i] & Oxffff;
pixels[i] = (short) pix;

ColorProcessors return the pixel array as an int[]. The values of the three color
components are packed into one int variable. They can be accessed as follows:

int red (int) (pixels[i] & 0xff0000)>>16;
(int) (pixels[i] & 0x00f£00)>>8;

(int) (pixels[i] & 0x0000ff);

int green
int blue

pixels[i] ((red & 0xff)<<16)+((green & 0xff)<<8) + (blue & Oxff);

The pixel array you work on is a reference to the ImageProcessor’s pixel array. So any
modifications effect the ImageProcessor immediately. However, if you want the Image-
Processor to use another (perhaps newly created) array, you can do this using

void setPixels(java.lang.Object pixels)
You do not always have to retrieve or set the whole pixel array. ImageProcessor offers
some other methods for retrieving or setting pixel values:

int getPixel(int x, int y)
Returns the value of the specified pixel.
void putPixel(int x, int y, int value)

Sets the pixel at (x,y) to the specified value.

Writing ImageJ Plugins—A Tutorial 17

Version 1.71

float getPixelValue(int x, int y)
Returns the value of the specified pixel.
int[] getPixel(int x, int y, int[] iArray)
Returns the samples of the specified pixel as a one-element (grayscale) or three-

element (RGB) array. Optionally, a preallocated array iArray can be passed to
receive the pixel values.

void getColumn(int x, int y, int[] data, int length)

Returns the pixels down the column starting at (x, y) in data.

void putColumn(int x, int y, int[] data, int length)

Inserts the pixels contained in data into a column starting at (x, y).

void getRow(int x, int y, int[] data, int length)

Returns the pixels along the horizontal line starting at (x,y) in data.

void putRow(int x, int y, int[] data, int length)

Inserts the pixels contained in data into a horizontal line starting at (x,y).

double[] getLine(int x1, int yl1, int x2, int y2)
Returns the pixels along the line with start point (x1,y1) and end point (x2,y2).
The method
int[] getPixel(int x, int y)
of ImagePlus returns the pixel value at (x,y) as a four element array.

All these methods should only be used if you intend to modify just a few pixels. If you
want to modify large parts of the image it is faster to work with the pixel array.

4.5 Regions of Interest

A plugin filter does not always have to work on the whole image. ImagelJ supports regions
of interest (ROI) which can be rectangular, oval, polygonal, freeform or text selections of
regions of the image.

The bounding rectangle of the current ROI can be retrieved from the ImageProcessor using

java.awt.Rectangle getRoi()
This makes it possible to just handle the pixels that are inside this rectangle.
The method
ImageProcessor getMask()
returns a mask image for non-rectangular ROIs.
ROIs can be set on the ImageProcessor using
void setRoi(int x, int y, int rwidth, int rheight)
This sets the ROI to the rectangle starting at (x,y) with specified width and height.

void setRoi(java.awt.Rectangle r)

Defines a rectangular selection.

void setRoi(java.awt.Polygon r)

Defines a polygonal selection.

Writing ImageJ Plugins—A Tutorial 18

Version 1.71

The methods listed above are also available on the ImagePlus object, which has in addition
the method

Roi getRoi()
Returns a ROI object representing the current selection.

The classes representing the different types of ROIs can be found in ij.gui. These classes
are:

Line

OvalROI

PolygonRoi, with subclasses FreehandRoi and PointRoi
ShapeRoi

TextRoi

4.6 Creating New Images

In many cases it will make sense that a plugin does not modify the original image, but creates
a new image that contains the modifications.
ImagePlus’ method

ImagePlus createImagePlus()
returns a new ImagePlus with this ImagePlus’ attributes, but no image.
A similar function is provided by ImageProcessor’s

ImageProcessor createProcessor(int width, int height)
which returns a new, blank processor with specified width and height which can be
used to create a new ImagePlus using the constructor

ImagePlus(java.lang.String title, ImageProcessor ip)
The class NewImage offers some useful static methods for creating a new ImagePlus of a
certain type.
static ImagePlus createByteImage(java.lang.String title, int width, int
height, int slices, int options)
Creates a new 8 bit grayscale or color image with the specified title, width and
height and number of slices. options is one of the constants listed below (e.g. to
determine the initial filling mode of the image).

static ImagePlus createFloatImage(java.lang.String title, int width, int
height, int slices, int options)
Creates a new 32 bit floating point image with the specified title, width and height
and number of slices. options is one of the constants listed below (e.g. to determine
the initial filling mode of the image).

static ImagePlus createRGBImage(java.lang.String title, int width, int
height, int slices, int options)
Creates a new RGB image with the specified title, width and height and number
of slices. options is one of the constants listed below that (e.g. to determine the
initial filling mode of the image).

static ImagePlus createShortImage(java.lang.String title, int width, int
height, int slices, int options)
Creates a new 16 bit grayscale image with the specified title, width and height and
number of slices. options is one of the constants listed below (e.g. to determine
the initial filling mode of the image).

Writing ImageJ Plugins—A Tutorial 19

Version 1.71

static ImagePlus createlmage(java.lang.String title, int width, int
height, int nSlices, int bitDepth, int options)
Creates a new image with the specified title, width and height and number of slices.
bitDepth specifies the number of bits per pixel of the new image. options is one of
the constants listed below (e.g. to determine the initial filling mode of the image).
These are the possible values for the options argument defined in class NewImage:

FILL BLACK Fills the image with black color.
FILL WHITE Fills the image with white color

FILL_RAMP Fills the image with a horizontal grayscale ramp.

There are two methods to copy pixel values between different ImageProcessors:
void insert(ImageProcessor ip, int xloc, int yloc)

Inserts the image contained in ip at (xloc, yloc).

void copyBits(ImageProcessor ip, int xloc, int yloc, int mode)
Copies the image represented by ip to xloc, yloc using the specified blitting mode.

The blitting mode is one of the following constants defined in the interface Blitter:

ADD destination = destination+source

AND destination = destination AND source
AVERAGE destination = (destination+source)/2
COPY destination = source

COPY_INVERTED destination = 255—source
COPY_TRANSPARENT White pixels are assumed as transparent.
DIFFERENCE destination = |destination—source|
DIVIDE destination = destination/source

MAX destination = maximum/(destination,source)
MIN destination = minimum/(destination,source)
MULTIPLY destination = destination * source

OR destination = destination OR source
SUBTRACT destination = destination—source

XOR destination = destination XOR source

If you need a Java AWT image, you can retrieve it from the ImageProcessor using

java.awt.Image createImage()

Writing ImageJ Plugins—A Tutorial 20

Version 1.71

4.7 Displaying Images

Now that we can modify images we need to know how the changes can be made visible.
ImageJ uses a class called ImageWindow to display ImagePlus images. ImagePlus contains
everything that is necessary for updating or showing newly created images.

void draw()
Displays the image.

void draw(int x, int y, int width, int height)
Displays the image and draws the ROI outline using a clipping rectangle.

void updateAndDraw ()
Updates the image from the pixel data in its associated ImageProcessor and dis-
plays it.

void updateAndRepaintWindow ()
Calls updateAndDraw to update from the pixel data and draw the image. The
method also repaints the image window to force the information displayed above
the image (dimension, type, size) to be updated.

void show()

Opens a window to display the image and clears the status bar.

void show(java.lang.String statusMessage)

Opens a window to display the image and displays statusMessage in the status bar.

void hide()
Closes the window, if any, that is displaying the image.

4.8 Image Type Conversion

The simplest way to convert an image from one type to another is to use the conversion
methods of the image’s ImageProcessor.

ImageProcessor convertToByte(boolean doScaling)
Converts the processor to a ByteProcessor (8 bit grayscale). If doScaling is set,
the pixel values are scaled to the range 0 — 255, otherwise the values are clipped.

ImageProcessor convertToFloat()
Converts the processor to a FloatProcessor (32 bit grayscale). If a calibration
table has been set, the calibration function is used.

ImageProcessor convertToRGB()
Converts the processor to a ColorProcessor (RGB image).
ImageProcessor convertToShort(boolean doScaling)

Converts the processor to a ShortProcessor (16 bit grayscale). If doScaling is set,
the pixel values are scaled to the range 0 — 65, 536, otherwise the values are clipped.

Writing ImageJ Plugins—A Tutorial 21

Version 1.71

void threshold(int level)

Converts 8 and 16bit images grayscale to binary images using the specified thresh-
old level. autoThreshold() determines the level automatically and then performs
thresholding. On RGB images, thresholding is performed separately on each chan-
nel. Note that the thresholding methods work in place and do not return a new
ImageProcessor.

The class ImageConverter in ij.process provides a number of methods for image type
conversion, also methods for converting RGB and HSB to stacks and vice versa. They can be
accessed either directly or by using the plugin class ij.plugin.Converter as a convenient
interface.

An instance of the converter can be constructed using

Converter ()

and works on the current image.
The only method of this class is
public void convert(java.lang.String item)

where item is a string specifying the destination type. It can have one of the values
“8-bit”, “16-bit”, “32-bit”, “8-bit Color”, “RGB Color”, “RGB Stack” and “HSB

Stack”.
Similarly, an ImageConverter instance can be created using

ImageConverter (ImagePlus imp)
The methods for conversion are:

public void convertToGray8()
Converts the ImagePlus to 8 bit grayscale.

public void convertToGray16()
Converts the ImagePlus to 16 bit grayscale.

public void convertToGray32()
Converts the ImagePlus to 32 bit grayscale.

public void convertToRGB()
Converts the ImagePlus to RGB.
public void convertToRGBStack()

Converts an RGB image to an RGB stack (i.e. a stack with 3 slices representing
red, green and blue channel).

public void convertToHSB()
Converts an RGB image to a HSB stack (i.e. a stack with 3 slices representing hue,
saturation and brightness channel).

public void convertRGBStackToRGB()
Converts a 2 or 3 slice 8-bit stack to RGB.
public void convertHSBToRGB()
Converts a 3-slice (hue, saturation, brightness) 8-bit stack to RGB.

public void convertRGBtoIndexedColor (int nColors)
Converts an RGB image to 8-bits indexed color. nColors must be greater than 1
and less than or equal to 256.

Writing ImageJ Plugins—A Tutorial 22

Version 1.71

To scale to 0—255 when converting short or float images to byte images and to 0—65535
when converting float to short images set scaling true using

public static void setDoScaling(boolean scaleConversions)
public static boolean getDoScaling()
returns true if scaling is enabled.

ImageConverter does not convert stacks, you can use StackConverter for this purpose. An
instance of this class can be created using

StackConverter (ImagePlus img)

It has the following methods:

void convertToGray8()

Converts this stack to 8-bit grayscale.

void convertToGray16()

Converts this stack to 16-bit grayscale.

void convertToGray32()
Converts this stack to 32-bit (float) grayscale.

void convertToRGB()
Converts the stack to RGB.

void convertToIndexedColor(int nColors)
Converts the stack to 8-bits indexed color. nColors must be greater than 1 and less
than or equal to 256.

4.9 ColorInverter PlugIn (Example)

With the knowledge of the previous sections we can write our first own plugin. We will
modify the Inverter_ plugin so that it handles RGB images. It will invert the colors of the
pixels of the original image’s ROI and display the result in a new window.

As mentioned before, we start from the existing plugin Inverter_. First of all we modify
the class name.

import ij.*;

import ij.gui.x*;

import ij.process.x*;

import ij.plugin.filter.PlugInFilter;
import java.awt.x*;

public class ColorInverter_ implements PlugInFilter {

Don’t forget to rename the file to ColorInverter_.java, otherwise you won’t be able to
compile it!

We want to handle RGB files, we do not want to apply it to stacks, we want to support
non-rectangular ROIs and because we display the results in a new image we do not modify
the original, so we change the capabilities returned by the setup method to DOES_RGB +
SUPPORTS_MASKING + NO_CHANGES.

Writing ImageJ Plugins—A Tutorial 23

Version 1.71

public int setup(String arg, ImagePlus imp) {
if (arg.equals("about")) {
showAbout () ;
return DONE;

}
return DOES_RGB+SUPPORTS_MASKING+NO_CHANGES;

}
The run method will do the actual work.
public void run(ImageProcessor ip) {

First we save the dimension and the ROI of the original image to local variables.

int w = ip.getWidth();
int h = ip.getHeight();
Rectangle roi = ip.getRoi();

We want to have the result written to a new image, so we create a new RGB image of the
same size, with one slice and initially black and get the new image’s processor.

ImagePlus inverted = NewImage.createRGBImage("Inverted image", w, h,
1, NewImage.FILL_BLACK);
ImageProcessor inv_ip = inverted.getProcessor();

Then we copy the image from the original ImageProcessor to (0,0) in the new image, using
COPY blitting mode (this mode just overwrites the pixels in the destination processor). We
then get the pixel array of the new image (which is of course identical to the old one). It’s a
RGB image, so we get an int array.

inv_ip.copyBits(ip,0,0,Blitter.COPY);
int[] pixels = (int[]) inv_ip.getPixels();

We now go through the bounding rectangle of the ROI with two nested loops. The outer
one runs through the lines in the ROI, the inner one through the columns in each line. The
offset in the one-dimensional array is the start of the current line (= width of the image x
number of scanlines).

for (int i=roi.y; i<roi.y+roi.height; i++) {
int offset =ixw;
for (int j=roi.x; j<roi.x+roi.width; j++) {

In the inner loop we calculate the position of the current pixel in the one-dimensional array
(we save it in a variable because we need it twice). We then get the value of the current
pixel. Note that we can access the pixel array of the new image, as it contains a copy of the
old one.

int pos = offset+j;
int ¢ = pixels[pos];

Writing ImageJ Plugins—A Tutorial 24

Version 1.71

We extract the three color components as described above.

int r (c & 0xff0000)>>16;
int g = (c & 0x00££00)>>8;
int b (c & 0x0000ff);

We invert each component by subtracting it’s value from 255. Then we pack the modified
color components into an integer again.

r=255-r;

g=255-g;

b=255-b;

pixels([pos] = ((r & Oxff) << 16) +
((g & Oxff) << 8) +
(b & Oxff);

3

We have now done all necessary modifications to the pixel array. Our image is still not visible,
so we call show to open an ImageWindow that displays it. Then we call updateAndDraw to
force the pixel array to be read and the image to be updated.

inverted.show();
inverted.updateAndDraw() ;

4.10 Stacks

ImageJ supports expandable arrays of images called image stacks, that consist of images
(slices) of the same size. In a plugin filter you can access the currently open stack by retrieving
it from the current ImagePlus using

ImageStack getStack()
ImagePlus also offers a method for creating a new stack:

ImageStack createEmptyStack()
Returns an empty image stack that has the same width, height and color table as
this image.
Alternatively you can create an ImageStack using one of these constructors:
ImageStack(int width, int height)

Creates a new, empty image stack with specified height and width.

ImageStack(int width, int height, java.awt.image.ColorModel cm)
Creates a new, empty image stack with specified height, width and color model.
To set the newly created stack as the stack of an ImagePlus use its method

void setStack(java.lang.String title, ImageStack stack)
The number of slices of a stack can be retrieved using the method

int getSize()
of class ImageStack or with the methods

Writing ImageJ Plugins—A Tutorial 25

Version 1

71

int getStackSize()

int getImageStackSize()
of class ImagePlus.
The currently displayed slice of an ImagePlus can be retrieved and set using

int getCurrentSlice()

void

setSlice(int index)

A stack offers several methods for retrieving and setting its properties:
int getHeight()

Returns the height of the stack.

int getWidth()

java.

void

Returns the width of the stack.

lang.0Object getPixels(int n)

Returns the pixel array of the specified slice, where n is a number from 1 to the
number of slices. See also Section 4.4.

setPixels(java.lang.0bject pixels, int n)

Assigns a pixel array to the specified slice, where n is a number from 1 to the number
of slices. See also Section 4.4.

ImageProcessor getProcessor(int n)

java.

void

java.

void

Returns an ImageProcessor for the specified slice, where n is a number from 1 to
the number of slices. See also Section 4.3.

lang.String getSliceLabel(int n)

Returns the label of the specified slice, where n is a number from 1 to the number
of slices.

setSlicelLabel(java.lang.String label, int n)

Sets the label of the specified slice, where n is a number from 1 to the number of
slices.

awt.Rectangle getRoi()

Returns the bounding rectangle of the stack’s ROI. For more information on ROIs,
see Section 4.5.

setRoi(java.awt.Rectangle roi)

Sets the stacks ROI to the specified rectangle. For more information on ROIs, see
Section 4.5.

Slices can be added to and removed from the ImageStack using these methods:

void

void

void

void

addSlice(java.lang.String slicelLabel, ImageProcessor ip)

Adds the image represented by ip to the end of the stack.
addSlice(java.lang.String slicelabel, ImageProcessor ip, int n)
Adds the image represented by ip to the stack following slice n.
addSlice(java.lang.String slicelLabel, java.lang.Object pixels)
Adds an image represented by its pixel array to the end of the stack.

deletelastSlice()
Deletes the last slice in the stack.

Writing ImageJ Plugins—A Tutorial 26

Version 1.71

void deleteSlice(int n)

Deletes the specified slice, where n is in the range 1...number of slices.

4.11 StackAverage Plugln (Example)

This example shows how to handle stacks. It calculates the average values of pixels located
at the same position in each slice of the stack and adds a slice showing the average values to
the end of the stack.

First of all, we import the necessary packages. We want to work on the current stack so
we need to implement PlugInFilter.

import ij.*;
import ij.plugin.filter.PluglnFilter;
import ij.process.x*;

public class StackAverage_ implements PlugInFilter {

We define the stack as instance variable because we will retrieve it in setup and use it in
run.

protected ImageStack stack;

In this method we get the stack from the current image and return the plugin’s capabilities—
in this case we indicate that it handles 8 bit grayscale images and requires a stack as input.

public int setup(String arg, ImagePlus imp) {
stack = imp.getStack();
return DOES_8G + STACK_REQUIRED;

}

In the run method we declare a byte array that will hold the pixels of the current slice. Then
we get width and height of the stack and calculate the length of the pixel array of each slice
as the product of width and height. sum is the array to hold the summed pixel values.

public void run(ImageProcessor ip) {
byte[] pixels;
int dimension = stack.getWidth()*stack.getHeight();
int[] sum = new int[dimension];

In the outer loop we iterate through the slices of the stack and get the pixel array from each
slice. In the inner loop we go through the pixel array of the current slice and add the pixel
value to the corresponding pixel in the sum array.

for (int i=1;i<=stack.getSize();i++) {
pixels = (byte[]) stack.getPixels(i);
for (int j=0;j<dimension;j++) {
sum[j] += pixels[j] & Oxff;
}

Writing ImageJ Plugins—A Tutorial 27

Version 1.71

We have now gone through the whole stack. The image containing the averages will be a
8 bit grayscale image again, so we create a byte array for it. Then we iterate through the
pixels in the sum array and divide each of them through the number of slices to get pixel
values in the range 0...255.

byte[] average = new byte[dimension];
for (int j=0;j<dimension;j++) {

average[j] = (byte) ((sum[jl/stack.getSize()) & Oxff);
}

Finally we add a new slice to the stack. It is called “Average” and represented by the pixel
array that contains the average values.

stack.addSlice("Average",average);

4.12 Additional Reference

This reference is thought as a supplement to the concepts presented in this section. It is not
complete—it just covers what you will normally need for writing plugins. For a complete
reference see the API documentation and the source code (see Section 10.1 for the pointers
to further documentation).

4.12.1 ImagePlus

Windows
void setWindow(ImageWindow win)
Sets the window that displays the image.
ImageWindow getWindow()
Gets the window that is used to display the image.
void mouseMoved(int x, int y)
Displays the cursor coordinates and pixel value in the status bar.
Multithreading
boolean lock()
Locks the image so that it cannot be accessed by another thread.

boolean lockSilently()
Similar to lock, but doesn’t beep and display an error message if the attempt to lock
the image fails.

void unlock()

Unlocks the image.
Lookup Tables

LookUpTable createLut()
Creates a LookUpTable based on the image.

Writing ImageJ Plugins—A Tutorial 28

Version 1.71

Statistics

ij.process.ImageStatistics getStatistics()
Returns an ImageStatistics object generated using the standard measurement
options (area, mean, mode, min and max).

ij.process.ImageStatistics getStatistics(int mOptions)
Returns an ImageStatistics object generated using the specified measurement
options.

ij.process.ImageStatistics getStatistics(int mOptions, int nBins)
Returns an ImageStatistics object generated using the specified measurement
options and number of histogram bins.

Calibration

void setCalibration(ij.measure.Calibration cal)

Sets this image’s calibration.

void setGlobalCalibration(ij.measure.Calibration global)

Sets the system-wide calibration.

ij.measure.Calibration getCalibration()

Returns this image’s calibration.

void copyScale(ImagePlus imp)

Copies the calibration from the specified image.

4.12.2 ImageProcessor

Geometric Transforms

void flipHorizontal()
Flips the image horizontally.

void flipVertical()
Flips the image vertically.

void rotate(double angle)

Rotates the image angle degrees clockwise.

void scale(double xScale, double yScale)

Scales the image by the specified factors.

ImageProcessor crop()
Crops the image to the bounding rectangle of the current ROI. Returns a new image
processor that represents the cropped image.

ImageProcessor resize(int dstWidth, int dstHeight)
Resizes the image to the specified destination size. Returns a new image processor
that represents the resized image.

ImageProcessor rotateLeft ()

Rotates the image 90 degrees counter-clockwise. Returns a new image processor
that represents the rotated image.

Writing ImageJ Plugins—A Tutorial 29

Version 1.71

ImageProcessor rotateRight ()
Rotates the image 90 degrees clockwise. Returns a new image processor that repre-
sents the rotated image.

void setInterpolate(boolean interpolate)
Setting interpolate to true causes scale(), resize() and rotate () to do bilinear
interpolation, otherwise nearest-neighbor interpolation is used.

Filters

void convolve3x3(int[] kernel)
Convolves the image with the specified 3x3 convolution matrix.
void convolve(float[] kernel, int kernelWidth, int kernelHeight)
Convolves the image with the specified convolution kernelWidthxkernelHeight

matrix.
void sharpen()

Sharpens the image using a 3x3 convolution kernel.
void smooth()

Replaces each pixel with the 3x3 neighborhood mean.
void noise(double range)

Adds random noise (random numbers within range) to the image.
void filter(int type)

A 3x3 filter operation, the argument defines the filter type.

void dilate()
Dilates the image using a 3x3 minimum filter.

void erode()
FErodes the image using a 3x3 maximum filter.
void findEdges()
Finds edges using a Sobel operator.
void medianFilter()
A 3x3 median filter.
void gamma(double value)
A gamma correction.
void invert()

Inverts an image.

void add(int value)

Adds the argument to each pixel value.

void add(double value)

Adds the argument to each pixel value.

void multiply(double value)

Multiplies each pixel value with the argument.

Writing ImageJ Plugins—A Tutorial 30

Version 1.71

void

void

void

void

void

void

Drawing

void

void

void

void

void

void

void

void

void

void

void

sqr ()

Squares each pixel value.

sqrt ()

Calculates the square root of each pixel value.

and(int value)
Binary AND of each pixel value with the argument.

or (int value)

Binary OR of each pixel value with the argument.

xor(int value)
Binary exclusive OR of each pixel value with the argument.
logO)

Calculates pixel values on a logarithmic scale.

setColor(java.awt.Color color)
Sets the foreground color. This will set the default fill/draw value to the pixel value
that represents this color.

setValue(double value)

Sets the default fill/draw value.

setLineWidth(int width)

Sets the line width.

moveTo(int x, int y)

Sets the current drawing location to (x,y).
lineTo(int x2, int y2)

Draws a line from the current drawing location to (x2,y2).
drawPixel(int x, int y)

Sets the pixel at (x,y) to the current drawing color.
drawDot (int xcenter, int ycenter)

Draws a dot using the current line width and color.
drawDot2(int x, int y)

Draws a 2x2 dot in the current color.
drawPolygon(java.awt.Polygon p)

Draws the specified polygon.

drawRect (int x, int y, int width, int height)
Draws the specified rectangle.

£i110
Fills the current rectangular ROI with the current drawing color.

Writing ImageJ Plugins—A Tutorial 31

Version 1.71

void fillPolygon(java.awt.Polygon p)
Fills the specified polygon with the current drawing color.
void fill(int[] mask)

Fills pixels that are within the current ROI and part of the mask (i.e. pixels that
have value 0 (= black) in the mask array).

void drawString(java.lang.String s)

Draws the string s at the current location with the current color.
int getStringWidth(java.lang.String s)

Returns the width of the specified string in pixels.

Colors

int getBestIndex(java.awt.Color c)
Returns the LUT index that matches the specified color best.

java.awt.image.ColorModel getColorModel()
Returns this processor’s color model.

void invertLut()

Inverts the values in the lookup table.
Minimum, Maximum and Threshold

double getMin()

Returns the smallest displayed pixel value.

double getMax()
Returns the largest displayed pixel value.

void setMinAndMax(double min, double max)
Maps the pixels in this image from min...max to the value range of this type of
image.

void resetMinAndMax()
For short and float images, recalculates the minimum and maximum image val-
ues needed to correctly display the image (i.e. maps the color values to the 255
displayable grayscales.

void autoThreshold()

Calculates the auto threshold of an image and applies it.
double getMinThreshold()

Returns the minimum threshold.
double getMaxThreshold()

Returns the maximum threshold.

void setThreshold(double minThreshold, double maxThreshold, int lutUpdate)
Sets the minimum and maximum threshold levels, the third parameters specifies if
the lookup table will be recalculated.

Writing ImageJ Plugins—A Tutorial 32

Version 1.71

Histograms

int[] getHistogram()
Returns the histogram of the image. This method will return a luminosity histogram
for RGB images and null for floating point images.

int getHistogramSize()
The size of the histogram is 256 for 8 bit and RGB images and max-min+1 for 16
bit integer images.

Snapshots (Undo)
void snapshot()

Saves the current state of the processor as snapshot.

java.lang.0Object getPixelsCopy()
Returns a reference to this image’s snapshot (undo) array, i. e. the pixel array before
the last modification.

void reset()
Resets the processor to the state saved in the snapshot.

void reset(int[] mask)
Resets the processor to the state saved in the snapshot, excluding pixels that are

part of mask.

4.12.3 Stacks

Accessing Images

java.lang.0Object[] getImageArray()

Returns the stack as an array of ImagePlus objects.

java.lang.0bject getPixels(int n)

Returns the pixel array for the specified slice (1 <= n <= nr_slices).
Color

boolean isHSB()
Returns true, if this is a 3-slice HSB stack.

boolean isRGB()
Returns true, if this is a 3-slice RGB stack.

java.awt.image.ColorModel getColorModel ()
Returns the stack’s color model.

void setColorModel(java.awt.image.ColorModel cm)

Assigns a new color model to the stack.

5 ImagelJ’s Utility Methods

The ImageJ API contains a class called IJ that contains some very useful static methods.

Writing ImageJ Plugins—A Tutorial 33

Version 1.71

=l

File Edit Image Process Analyze Plugine Window Help
Ololz|of~z[AJ£+2|A] LA |2]8|0]8] |

Magnifying alass

Figure 1: The ImageJ main window and its components: Menu bar, tool bar and status bar.

5.1 (Error) Messages

It is often necessary that a plugin displays a message—Dbe it an error message or any other
information. To display an error message use
static void error(java.lang.String msg)
It displays a message in a dialog box entitled “Error”. To display an error message
with a custom title use
static void error(java.lang.String title, java.lang.String msg)
static void showMessage(java.lang.String msg)
displays a message in a dialog box entitled “Message”. To specify the title of the
message box use
static void showMessage(java.lang.String title, java.lang.String msg)
All these methods display modal message boxes with just an *OK” button. If you want to
let the user choose whether to cancel the plugin or to let it continue, use
static boolean showMessageWithCancel(java.lang.String title,
java.lang.String msg)
This method returns false if the user clicks cancel and true otherwise.
There are also some predefined messages:
static void noImage ()

Displays a “no images are open” dialog box.

static void outOfMemory(java.lang.String name)

)

Displays an “out of memory” message in the ImageJ window.

static boolean versionLessThan(java.lang.String version)
Displays an error message and returns false if the ImageJ version is less than the
one specified.

5.2 ImageJ Window, Status Bar and Progress Bar

The ImageJ main window and its components are shown in Figure 1.

5.2.1 Displaying Text

To display a line of text in the results window (Figure 2) use

static void write(java.lang.String s)
It is possible to use the results window’s text panel as a table (e.g. for displaying
statistics, measurements, etc.). In that case ImageJ lets you set the headings of the
columns using

static void setColumnHeadings(java.lang.String headings)

Note that this method clears the entire text panel.

Writing ImageJ Plugins—A Tutorial 34

Version 1.71

[resuts =101 x]
File Edit

|Area |Mean |Min |Max| =
1 93704 91.252 31 255

»

Mean 93704 91.252 31 255
sD 0 0 0 0

Min 43704 91.252 31 245
[E=H 93704 91.252 31 2485

4|]

Figure 2: The ImageJ results window displays messages, measurements, etc. It opens auto-
matically, when text is written to it.

static boolean isResultsWindow()
can be used to check whether the results window is open.
static void log(java.lang.String s)

displays a line of text in the log window. To temporarily redirect the output of
IJ.error() and IJ.showMessage() to the log window, call

static void redirectErrorMessages()

You will often want to displays numbers, which you can format for output using

static java.lang.String d2s(double n)
Converts a number to a formatted string using two digits to the right of the decimal
point.

static java.lang.String d2s(double n, int precision)

Converts a number to a rounded formatted string.

5.2.2 Status Bar

Text can also be displayed in the status bar at the bottom of the main window using the
method

static void showStatus(java.lang.String s)
It can be useful to display the time that was needed for an operation:

static void showTime(ImagePlus imp, long start, java.lang.String str)
will display the string argument you specify, followed by the time elapsed since the
specified start value and the rate of processed pixels per second.

5.2.3 Progress Bar

The progress of the current operation can be visualized using ImageJ’s progress bar.

static void showProgress(double progress)
updates the position of the progress bar to the specified value (in the range from 0.0
to 1.0).

Writing ImageJ Plugins—A Tutorial 35

Version 1.71

static void showProgress(int currentIndex, int finalIndex)
updates the position of the progress bar by setting the bar length to
(currentIndex/ finalIndex) x total — length.

5.3 User input

Often user input (e. g. a parameter) is required in a plugin. ImageJ offers two simple methods
for that purpose.

static double getNumber(java.lang.String prompt, double defaultNumber)
Allows the user to enter a number in a dialog box.
static java.lang.String getString(java.lang.String prompt,

java.lang.String defaultString)
Allows the user to enter a string in a dialog box.

A way to build more sophisticated dialogs is presented in Section 6.1, accessing mouse
and keyboard events is discussed in Section 6.6.

5.4 Calling Menu Commands, Macros and Plugins

You can access all menu commands from a plugin. There are two different methods:

static void doCommand(java.lang.String command)
Starts executing a menu command in a separate thread and returns immediately.
Executing the command in a separate thread means that the program will not wait
until the command is executed, it will immediately proceed. This has the advantage
that the program is not blocked while the command is running.

static void run(java.lang.String command)
Runs a menu command in the current thread, the program will continue after the
command has finished. To additionally pass options to the command, use.

static void run(java.lang.String command, java.lang.String options)
There are also two methods to run macros, one with arguments and one without:

static java.lang.String runMacro(java.lang.String macro)
static java.lang.String runMacro(java.lang.String macro, java.lang.String
arg)

To run a macro by specifiying its file name, use
static java.lang.String runMacroFile(java.lang.String name,
java.lang.String arg)

Like macros you can also run other plugins.

static java.lang.0bject runPlugIn(java.lang.String className,
java.lang.String arg)
Runs the plugin specified by its class name and initializes it with the specified
argument.

5.5 MessageTest Plugln (Example)

We will now look at a plugin that uses some of the utility methods presented in this chapter.
This time, we do not need an image, so we implement the interface PlugIn. We also have to
import the package ij as we need the class IJ from there.

Writing ImageJ Plugins—A Tutorial 36

Version 1.71

import ij.x*;
import ij.plugin.Plugln;

public class Message_Test implements PlugIn {

All we have to implement is the run method. We do not need the argument, so we ignore
it. First of all we display a string in the status bar that informs the user that the plugin was
started. Then we set the progress bar to 0% and show an error message.

public void run(String arg) {
IJ.showStatus("Plugin Message Test started.");
IJ.showProgress(0.0);
IJ.error("I need user input!");

We want the user to input a string and set the progress bar to 50% after that. Then we
write a message into the main window saying that we were going to start the sample plugin
Red And Blue (this is one of the plugins that come with ImageJ and displays a new image
with a red/blue gradient) and run the plugin. Finally we set the progress bar to 100% and
show a custom message box.

String name = IJ.getString("Please enter your name: ","I.J. User");
IJ.showProgress(0.5);

IJ.write("Starting sample plugin Red And Blue ... ");
IJ.runPlugIn("Red_And_Blue","");

IJ.showProgress(1.0);

IJ.showMessage("Finished." ,name+", thank you for running this plugin");

5.6 More Utilities

Images

static ImagePlus createlmage(java.lang.String title, java.lang.String
type, int width, int height, int depth)
Creates a new image with the specified title, width and height and number of slices.
bitDepth specifies the type of image to be created and is one of GRAY8, GRAY16,
GRAY32, RGB. options is one of the constants listed in Section 4.6.

static ImagePlus getImage()

Returns the active image.
Keyboard & Sound

static void beep()

Emits an audio beep.

static boolean altKeyDown()
Returns true if the Alt key is down.

static boolean spaceBarDown()

Returns true if the space bar is down.

Writing ImageJ Plugins—A Tutorial 37

Version 1.71

Accessing GUI Elements

static ImageJ getInstance()

Returns a reference to the “Imagel” frame.

static java.applet.Applet getApplet()

Returns the applet that created this ImageJ or null if running as an application.

static TextPanel getTextPanel()

Returns a reference to the text panel in ImagelJ’s results window.

System

static boolean isMacintosh(), static boolean isMac0SX(), static boolean
isWindows ()
Returns true if the machine on which ImageJ is running is the specified platform.

static boolean isJaval4(), static boolean isJava2()
Returns true if ImageJ is running on a JVM greater or equal to 1.4 or on a Java 2
JVM respectively.

static void wait(int msecs)

Delays msecs milliseconds.

static java.lang.String freeMemory()

Returns the amount of free memory in kByte as string.

static long currentMemory()

Returns the amount of memory currently used by ImagelJ

6 Windows

By default, plugins work with ImagePlus objects displayed in ImageWindows. They can
output information to the ImageJ window but they cannot control a window. Sometimes
this can be necessary, especially for getting user input.

One option is to create a plugin, that has its own window. This can be done using the
PlugInFrame class, that has been discussed in 2.5.

6.1 GenericDialog

In Section 5.3 we saw a very simple way of getting user input. If you need more user input
than just one string or number, GenericDialog helps you build a modal AWT dialog, i.e.
the programs only proceeds after the user has answered the dialog. The GenericDialog can
be built on the fly and you don’t have to care about event handling.

There are two constructors:

GenericDialog(java.lang.String title)

Creates a new GenericDialog with the specified title.

Writing ImageJ Plugins—A Tutorial 38

Version 1.71

GenericDialog(java.lang.String title, java.awt.Frame parent)
Creates a new GenericDialog using the specified title and parent frame (e.g. your
plugin class, which is derived from PlugInFrame). The ImageJ frame can be re-
trieved using I1J.getInstance().
The dialog can be displayed using

void showDialog()

6.1.1 Adding controls

GenericDialog offers several methods for adding standard controls to the dialog:
void addCheckbox(java.lang.String label, boolean defaultValue)
Adds a checkbox with the specified label and default value.

public void addCheckboxGroup(int rows, int columns,

java.lang.String[] labels, boolean[] defaultValues)
Adds a group of checkboxes using a grid layout with the specified number of rows
and columns. The arrays contain the labels and the default values of the checkboxes.

void addChoice(java.lang.String label, java.lang.String[] items,
java.lang.String defaultItem)
Adds a drop down list (popup menu) with the specified label, items and default
value.
void addMessage(java.lang.String text)

Adds a message consisting of one or more lines of text.

void addNumericField(java.lang.String label, double defaultValue, int
digits)

Adds a numeric field with the specified label, default value and number of digits.
void addNumericField(java.lang.String label, double defaultValue, int
digits, int columns, java.lang.String units)

Adds a numeric field and additionally specifies the width of the field and displays

the units string to the right of the field.

void addSlider(java.lang.String label, double minValue, double maxValue,

double defaultValue)
Adds a slider with the specified label, minimum, maximum and default values.

void addStringField(java.lang.String label, java.lang.String defaultText)
Adds a 8 column text field with the specified label and default value.

void addStringField(java.lang.String label, java.lang.String defaultText,
int columns)
Adds a text field with the specified label, default value and number of columns.

void addTextAreas(java.lang.String textl, java.lang.String text2, int
rows, int columns)
Adds one or two text areas (side by side) with the specified initial contents and
number of rows and columns. If text2 is null, the second text area will not be
displayed.

Writing ImageJ Plugins—A Tutorial 39

Version 1.71

6.1.2 Getting Values From Controls

After the user has closed the dialog window, you can access the values of the controls with
the methods listed here. There are two groups of methods for this purpose: One iterates
through the controls of the same type and returns the value of the next control of this type
in the order in which they were added to the dialog:

boolean getNextBoolean()
Returns the state of the next checkbox.
java.lang.String getNextChoice()

Returns the selected item in the next drop down list (popup menu).

int getNextChoiceIndex()

Returns the index of the selected item in the next drop down list (popup menu).
double getNextNumber ()

Returns the contents of the next numeric field.
java.lang.String getNextString()

Returns the contents of the next text field.
java.lang.String getNextText ()

Returns the contents of the next text area.

The other group of methods returns the list of controls for each type:

java.util.Vector getCheckboxes()
java.util.Vector getChoices()
java.util.Vector getNumericFields()
java.util.Vector getSliders()

java.util.Vector getStringFields()
The method

boolean wasCanceled()
returns true, if the user closed the dialog using the “Cancel” button, and false, if
the user clicked the “OK” button.
If the dialog contains numeric fields, use

boolean invalidNumber ()
to check if the values in the numeric fields are valid numbers. This method returns

true if at least one numeric field does not contain a valid number.
java.lang.String getErrorMessage ()
returns an error message if getNextNumber () was unable to convert a string into a
number, otherwise, returns null.
GenericDialog extends java.awt.Dialog, so you can use any method of java.awt.Dialog
or one of its superclasses. For more information consult the Java AWT documentation.

6.2 FrameDemo Plugln (Example)

This demo shows the usage of GenericDialog and PlugInFrame. It displays a dialog that
lets the user specify the width and height of the PlugInFrame that will be displayed after
closing the dialog.

Writing ImageJ Plugins—A Tutorial 40

Version 1.71

We import the ij and ij.process package, the ij.gui package, where GenericDialog
is located and the classes PlugInFrame and AWT label.

import ij.*;

import ij.gui.x*;

import ij.plugin.frame.PluglnFrame;
import java.awt.Label;

Our plugin is a subclass of PlugInFrame which implements the PlugIn interface, so we don’t
have to implement an interface here.

public class FrameDemo_ extends PlugInFrame {

We overwrite the default constructor of the new class. If we wouldn’t do that, the superclass’
default constructor PlugInFrame () would be called, which does not exist. So we have to call
the superclass’ constructor and specify a title for the new frame.

public FrameDemo_() {
super ("FrameDemo") ;

}

In the run method we create a GenericDialog with the title “FrameDemo settings”. Then
we add two 3 digit numeric fields with a default value of 200.

public void run(String arg) {
GenericDialog gd = new GenericDialog("FrameDemo settings");
gd.addNumericField ("Frame width:",200.0,3);
gd.addNumericField ("Frame height:",200.0,3);

We display the dialog. As it is modal, the program is stopped until the user closes the dialog.
If the user clicks “Cancel’” we display an error message and leave the run method.

gd.showDialog();

if (gd.wasCanceled()) {
IJ.error("PlugIn canceled!");
return;

3

Here we get the values of the numeric fields with two calls of getNextNumber (). We set the
size of the FrameDemo window to these values and add a centered AWT label with the text
“PlugInFrame demo”. Finally we show the frame.

this.setSize((int) gd.getNextNumber (), (int) gd.getNextNumber());
this.add(new Label ("PlugInFrame demo",Label.CENTER));
this.show();

Writing ImageJ Plugins—A Tutorial 41

Version 1.71

6.3 ImageWindow

An ImageWindow is a frame (derived from java.awt.Frame) that displays an ImagePlus.
The frame contains an ImageCanvas on which the image is painted and a line of information
text on top. Each ImagePlus is associated with an ImageWindow, which is created when the
image’s show() method is called for the first time. ImageWindows can also be created using
one of the constructors:

ImageWindow (ImagePlus imp)

Creates a new ImageWindow that contains the specified image.

ImageWindow(ImagePlus imp, ImageCanvas ic)
Creates a new ImageWindow that contains the specified image which will be painted
on the specified canvas.
ImageJ maintains the list of open windows using the WindowManager class. When the con-
structor of ImageWindow is called, the window is added to the list of open windows.

boolean close()
Closes the window and removes it from the list. If the image has been changed, this

method will ask the user whether the image displayed in this window shall be saved.
If the user wants to save the image the method returns false. Otherwise it returns
true and the image is deleted.

boolean isClosed()
Returns true if close() has already been called, false otherwise.

The image displayed in an ImageWindow and the canvas on which the image is drawn can be
accessed using

ImagePlus getImagePlus()

ImageCanvas getCanvas()
ImageWindow provides methods for the cut, copy and paste command:

void copy(boolean cut)
Copies the current ROI (which has to be rectangular) to the clipboard. If the
argument cut is true the ROI is cut and not copied.

void paste()
Pastes the content of the clipboard into the current image. The content of the
clipboard may not be larger than the current image and must be the same type.
Like an ImagePlus an ImageWindow has a method

void mouseMoved(int x, int y)
This method displays the specified coordinates and the pixel value of the image in
this window in the status bar of the ImageJ window.
ImageWindow has also a useful public boolean variable called running, which is set to
false if the user presses escape or closes the window. This can be used in a plugin like
shown in the following fragment to give the user a possibility to interrupt a plugin.

win.running = true;
while (win.running) {
// do computation

¥

Writing ImageJ Plugins—A Tutorial 42

Version 1.71

The variable running2 has a similar function as running, but is also set to false if the
user clicks in the image window.

6.4 ImageCanvas

Each ImageWindow has an ImageCanvas on which the image is drawn. This is a subclass
of java.awt.Canvas and also implements a MouseListener and a MouseMotionListener
(for more information see the Java API documentation, package java.awt.event). It can
therefore be useful for event handling, e. g. by subclassing it. Additionally it can be used to
get information on how the image is displayed and to modify this. Some useful methods of
ImageCanvas are listed here:

java.awt.Point getCursorLoc()

Returns the current cursor location.
double getMagnification()

Returns the current magnification factor of the image.
void setMagnification(double magnification)

Sets new magnification factor for image.
java.awt.Rectangle getSrcRect()

The surrounding rectangle of the image with current magnification.
int offScreenX(int x)

Converts a screen x-coordinate to an offscreen x-coordinate.
int offScreenY(int y)

Converts a screen y-coordinate to an offscreen y-coordinate.
int screenX(int x)

Converts an offscreen x-coordinate to a screen x-coordinate.
int screenY(int y)

Converts an offscreen y-coordinate to a screen y-coordinate.
void setCursor(int x, int y)

Sets the cursor based on the current tool and cursor location.

void setImageUpdated()
ImagePlus.updateAndDraw calls this method to get the paint method to update
the image from the ImageProcessor.

void zoomIn(int x, int y)
Zooms in by making the window bigger.
void zoomOut(int x, int y)

Zooms out by making srcRect bigger.

Writing ImageJ Plugins—A Tutorial 43

Version 1.71

6.5 Subclasses of ImageWindow
6.5.1 StackWindow

A StackWindow is a frame for displaying ImageStacks. It is derived from ImageWindow and
has a horizontal scrollbar to navigate within the stack.
void showSlice(int index)

Displays the specified slice and updates the stack’s scrollbar.

void updateSliceSelector ()
Updates the stack’s scrollbar.

6.5.2 Histogram Window

HistogramWindow is a subclass of ImageWindow designed to display histograms. There are
two constructors:
HistogramWindow(ImagePlus imp)
Displays a histogram (256 bins) of the specified image. The window has the title
“Histogram”.
HistogramWindow(java.lang.String title, ImagePlus imp, int bins)

Displays a histogram of the image, using the specified title and number of bins.

void showHistogram(ImagePlus imp, int bins)
Displays the histogram of the image using the specified number of bins in the
HistogramWindow.

6.5.3 PlotWindow

This is a subclass of ImageWindow designed for displaying plots in a (z,y)-plane
PlotWindow(java.lang.String title, java.lang.String xLabel,
java.lang.String yLabel, double[] xValues, double[] yValues)

Constructs a new plot window with specified title, labels for x- and y- axis and adds
points with specified (x,y)-coordinates.

void addLabel(double x, double y, java.lang.String label)
Adds a new label with the specified text at position (x,y).

void addPoints(double[] x, double[] y, int shape)
This methods adds points with specified (x,y) coordinates to the plot. The number
of points is given by the length of the array. The argument shape determines the
shape of a point. Currently only circles are supported, which is specified by passing
the constant PlotWindow.CIRCLE.

void setLimits(double xMin, double xMax, double yMin, double yMax)

Sets the limits of the plotting plane.

6.6 Event Handling (Example)

ImageWindow and ImageCanvas are derived from the AWT classes Frame and Canvas and
therefore support event handling. This is especially useful to get user input via mouse and
keyboard events.

Writing ImageJ Plugins—A Tutorial 44

Version 1.71

Event handling in Java AWT is based on interfaces called listeners. There is a listener
interface for each type of event. A class implementing a listener interface is able to react on
a certain type of event. The class can be added to a component’s list of listeners and will be
notified when an event that it can handle occurs.

A plugin that has to react on a certain type of event can implement the appropriate
interface. It can access the window of the image it works on and the canvas on which the
image is painted. So it can be added as a listener to these components.

For example, we want to write a plugin that reacts to mouse clicks on the image it works
on. The listener interfaces are defined in java.awt.event, so we import this package.

import ij.*;

import ij.plugin.filter.PlugIlnFilter;
import ij.process.*; import ij.gui.x*;
import java.awt.event.x*;

The plugin has to implement the appropriate interface:

public class Mouse_Listener implements PlugInFilter, MouseListener {

We have to access the image and the canvas in more than one method, so we declare them
as instance variables:

ImagePlus img;
ImageCanvas canvas;

In the setup method we have access to the ImagePlus so we save it to the instance variable.
We also set the plugin’s capabilities.

public int setup(String arg, ImagePlus img) {
this.img = img;
return DOES_ALL+NO_CHANGES;

}

In the run method we get the ImageWindow that displays the image and the canvas on which
it is drawn. We want the plugin to be notified when the user clicks on the canvas so we add
the plugin to the canvas’ MouseListeners.

public void run(ImageProcessor ip) {
ImageWindow win = img.getWindow();
canvas = win.getCanvas();
canvas.addMouseListener (this) ;

}

To implement the interface we have to implement the five methods it declares. We only want
to react on clicks so we can leave the others empty. We get the coordinates of the point of the
mouse click from the event object that is passed to the method. The image could be scaled
in the window so we use the offScreenX() and offScreenY() method of ImageCanvas to
receive the true coordinates.

Writing ImageJ Plugins—A Tutorial 45

Version 1.71

public void mouseClicked(MouseEvent e) {
int x = e.getX();
int y = e.getY();
int offscreenX = canvas.offScreenX(x);

int offscreenY = canvas.offScreenY(y);
IJ.write("mousePressed: "+offscreenX+","+offscreenY);

public void mousePressed(MouseEvent e) {}
public void mouseReleased(MouseEvent e) {}
public void mouseEntered(MouseEvent e) {}

public void mouseExited(MouseEvent e) {}

A more advanced mouse listener (which avoids assigning the listener to the same image twice)
and a similar example that reacts on keyboard events can be found at the ImageJ plugins
page (cf. Section 10).

Like mouse and key listeners a plugin can implement any event listener, e.g. a mouse
motion listener. For adding a mouse motion listener, the following changes of the mouse
listener plugin are necessary:

The class has to implement the event listener interface:

public class Mouse_Listener implements PlugInFilter, MouselListener,
MouseMotionListener {

In the setup method, we add the plugin as listener to the image canvas.
canvas.addMouseMotionListener (this) ;
Of course we have to implement the methods defined in the interface:

public void mouseDragged(MouseEvent e) {
IJ.write("mouse dragged: "+e.getX()+","+e.getY());
}

public void mouseMoved(MouseEvent e) {
IJ.write("mouse moved: "+e.getX(+","+e.getY());

}

For details about listener interfaces, their methods and the events passed please see the Java
AWT documentation.

7 Advanced Topics

7.1 Importing/Exporting Movies

Because of its capability to handle image stacks ImageJ can be used to process movies.
Import and export plugins for a number of common movie formats are available, for example

Writing ImageJ Plugins—A Tutorial 46

Version 1.71

based on QuickTime (http://www.apple.com/quicktime/download) or Java Media Framework
(http://java.sun.com/products/java-media/jmf/). The plugins can be found at the ImagelJ
plugins page listed in Section 10.2.

For all movie plugins it is recommended to increase the amount of available memory of
the JVM used for running ImagelJ (cf. Section 8).

7.2 Writing I/0 plugins
7.2.1 Overview

Plugins cannot only be used to implement new processing functionality, but also to support
reading and writing file formats which are not natively supported by ImageJ. The basic
approach is quite simple and the ImageJ API offers all of the required functionality.

To read an image file

e Display a file open dialog using the ij.io.0penDialog class and get the file path and
name selected by the user.

e Read the image metadata (size, pixel type, etc.) and data from the file. If a Java
library is available for this file format, consider using it for this step.

e Create a new ImagePlus and display it by calling show.
To write an image file

e Display a file save dialog using the ij.io.SaveDialog class and get the file path and
name selected by the user.

e Write the image metadata (size, pixel type, etc.) and data to the file. If a Java library
is available for this file format, consider using it for this step.

7.2.2 Simple_ASCII_Reader (Example)

To demonstrate the approach for writing I/O plugins, we are going to implement a reader
and a writer plugin for a very simple image format. The format is a simple ASCII file. Each
line contains the pixels of one line of the image, the pixels are separated by a space and the
values are from 0 to 255, i.e. a 8 bit grayscale image can be stored with this file format. A
sample image in this format, which contains a logarithmic gradient from left to right, looks
as follows:

15 31 63 127 255
15 31 63 127 255
15 31 63 127 255
15 31 63 127 255
15 31 63 127 255
15 31 63 127 255
156 31 63 127 255
15 31 63 127 255
15 31 63 127 255

OO O OO0 O OO0
e e e e
W W wWwwwwwww
N NN NN

The reader plugin does not need an image as input, so we implement the PlugIn interface,
and we keep an ImagePlus as instance variable that will hold the image we read from file:

Writing ImageJ Plugins—A Tutorial 47

Version 1.71

import
import
import
import
import
import
import

public

java.io.x*;
ij.*;
ij.io.x*;
ij.gui.*;
ij.plugin.*;
ij.process.*;
java.util. *;

class Simple_ASCII_Reader implements PlugIn {

ImagePlus img;

public Simple_ASCII_Reader() {
img = null;

}

The run method displays a file open dialog and gets the directory and file name the
user has selected. In the case that the user has not selected a file (i.e. cancelled), we return.
Otherwise we call the read method of our plugin (see below) and — in the case that a non-null
image is returned — show the new image.

public void run(String arg) {
OpenDialog od = new OpenDialog("Open image ...", arg);
String directory = od.getDirectory();
String fileName = od.getFileName() ;

if

(fileName==null) return;

read(directory,fileName) ;

if

(img==null) return;

img.show();

The actual functionality for reading the file is implemented in the read method of our
plugin. It makes use of a utility method called getLineAsArray, that takes one line of file,
tokenizes it and returns the values as a short array (as the values in the file are unsigned
and thus outside the byte value range):

protected short[] getLineAsArray(String line) {
StringTokenizer tokenizer = new StringTokenizer(line," ");
int size = tokenizer.countTokens();
short[] values = new short[size];

int 1 = 0;

while (tokenizer.hasMoreTokens()) {
String token = tokenizer.nextToken();
values[i] = (new Short(token)).shortValue();

i++;

3

Writing ImageJ Plugins—A Tutorial 48

Version 1.71

}

return values;

}

Now we can look at the read method. It opens a BufferedReader, and reads the lines
of the file into a vector

protected void read(String dir, String filename)
{
try {
BufferedReader br = new BufferedReader(new FileReader(dir+filename));
Vector lines = new Vector();

String line = br.readLine();
while (line'!'=null) {
lines.add(line);
line = br.readlLine();

}

Then we have to determine the metadata of our image, in order to know how we have to
create the new ImagePlus. In most real file formats you will find this information in some
header structure of the image file. We know that our simple ASCII format represents a 8 bit
graycale image with one slice, so we just need to get the width and height of the image. The
height is the number of lines we have read and the width is the number of values in the first
line. Then we can create the new image and get its pixel array.

int height = lines.size();
int width = getLineAsArray((String)lines.elementAt(0)).length;

img = NewImage.createByteImage(filename, width, height, 1, NewImage.FILL_BLACK);
byte[] pixels = (bytel[l) img.getProcessor().getPixels();

Then we can iterate through the lines we have read, and copy the pixels from the array
of each line to the pixel array of the image (converting them to byte). The rest of the code
is just for exception handling (e.g. in the case that reading from the file fails).

for (int i=0;i<height;i++) {
short [] values = getLineAsArray((String)lines.elementAt(i));
int offset = i*width;
for (int j=0;j<width;j++) {
pixels[offset+j] = (byte) valuesl[j];
}
}
}
catch (Exception e) {
IJ.error("Simple ASCII Reader", e.getMessage());
return;
}
}

Writing ImageJ Plugins—A Tutorial 49

Version 1.71

7.2.3 Simple ASCII Writer (Example)

Now we are going to implement a writer plugin for the same simple ASCII format. Clearly
the writer needs an image as input, so we need to implement the interface PlugInFilter.
We keep the image and its processor as instance variables and return from the setup method
that we can handle 8 bit grayscale images.

public class Simple_ASCII_Writer implements PlugInFilter {
ImagePlus img;
ImageProcessor ip;

public Simple_ASCII_Writer() {
img = null;
ip = null;

X

public int setup(String arg, ImagePlus imp) {
img = imp;
return DOES_8G;
}

The run method displays a file save dialog, and — in case the user did not cancel — calls
the write method of our plugin, which does the actual work.

public void run(ImageProcessor ip) {
SaveDialog sd = new SaveDialog("Save image ...", "image",".txt");
String directory = sd.getDirectory();
String fileName = sd.getFileName();
if (fileName==null) return;
IJ.showStatus("Saving: " + directory + fileName);
this.ip = ip;
write(directory, fileName);

The write method opens a BufferedWriter and gets the pixel array of the image.

protected void write(String dir, String filename)

{
try {
BufferedWriter bw = new BufferedWriter(new FileWriter(dir+filename));
bytel[]l pixels = (bytel[l)ip.getPixels();

Then we iterate through the pixel array and write the values to the file. We need to
convert the numeric values to strings and write a space (except for the last one). Similarly,
we write a line feed after each of the lines, except for the last one.

int offset, pos;

for (int j=0;j<img.getHeight();j++) {

Writing ImageJ Plugins—A Tutorial 50

Version 1.71

offset = j*img.getWidth();

for (int i=0;i<img.getWidth();i++) {
pos = offset = i;
bw.write(new Integer(pixels([pos] & Oxff).toString());
if (i<img.getWidth()-1) bw.write(" ");

}

if (j<img.getHeight()-1) bw.write("\n");

}

The rest of the code just closes the writer and does the exception handling.

bw.close();
} catch (Exception e) {
IJ.error("Simple ASCII Writer", e.getMessage());
return;
}
}

Of course it would be possible to combine both plugins into one (using the PlugInFilter
interface), using the argument to determine whether the plugin should read an image or write
the currently active one.

7.2.4 Related issues

When reading/writing image files with 16bit or 32bit values, be aware of the fact that the
native byte order of your machine might be different than that of the Java virtual machine.
The byte order of the Java VM is most significant bit first (“big-endian”), while for exam-
ple Intel processors use least significant bit first (“litte-endian”). The ByteSwapper plugin
(available on the ImagelJ plugins page) can be used to change the byte order in this case.

Another interesting plugin in this context is HandleExtraFileTypes, which can be used
to access own reader plugins via the “File/Open” menu. ImagelJ calls this plugin if a file to
be opened is not recognized as one of the natively supported formats. A number of reader
plugins are already included in HandleFExtraFile Types and you can easily add further ones.

You can use the same basic approach for device I/O (e.g. reading data using capture
boards). In this case you will most likely need a Java library for accessing the hardware or
you have to interface a native C library using Java Native Interface (JNI).

7.3 Using the ImageJ Library outside ImageJ

The ImageJ classes form an image processing library which can be used in other Java appli-
cations and applets and also on the server side in servlets or Java Server Pages (JSP). The
following section outlines the use of the ImagelJ library in such projects.

7.3.1 Why use the ImagelJ library in your Java project?

Java 1.1.

Java 2 introduced many improvements concerning image processing with Java. But many
users still use browsers that only have a Java 1.1 virtual machine and only a minority uses

Writing ImageJ Plugins—A Tutorial 51

Version 1.71

Sun’s Java plugin. Java 2 support may also be not available on less widespread platforms.
ImagelJ still supports Java 1.1 and is therefore a good choice especially for applets.

ImagePlus as internal image format.

You will probably need an internal image representation format for your application. It
is convenient to use ImagePlus and ImageProcessor for this purpose, as a lot of basic
functionality (reading/writing pixel values, scaling, etc.) is already available.

Plugins and Macros.

If you decide to use ImagePlus as your internal image format you can also use all plugins
and macros from the ImageJ distribution as well as all other ImageJ plugins.

File 1/0.

You can use the ImagelJ file input/output plugins for reading and writing files in a variety of
formats.

Of course there are some other useful Java based imaging toolkits and libraries besides
ImageJ. The ImageJ links page at http://rsb.info.nih.gov/ij/links.html lists some of them.

7.3.2 Applications and Applets

To use the ImageJ library in your Java application, just import the necessary ImageJ packages
(e.g. ij.process) in your classes. To compile and run your application you have to add
ij.jar (if it’s not in the application directory you also have to specify the path) to the
classpath. In an application, you could also use dynamic class loading as it is implemented
in ImageJ for accessing user plugins.

Using the ImageJ library in an applet is quite similar: include the import statement in
your classes and add ij.jar to the classpath for compiling the applet. The Java security
model requires all libraries used by an unsigned applet to be located on the same host and
you have to include ij. jar in the archive list of the applet.

Assume your applet’s code is located in myapplet. jar, the applet class is MyApplet.class,
it uses the ImageJ library and both JAR files are located in the same directory as the HTML
file that embeds the applet. The applet tag in the HTML page would look like

<APPLET CODE="MyApplet.class" ARCHIVE="myapplet.jar, ij.jar"
WIDTH=400 HEIGHT=400>
</APPLET>

7.3.3 Servlets and JSP

Web applications often require modifying or generating images on the fly, e.g. for creating
thumbnail images. In Java based server side solutions the ImageJ library can be used for
image processing very easily. An example of a servlet that creates an image on the fly is
available at http://rsb.info.nih.gov:8080/index.html.

The example discussed in the following reads an image using the ImageJ API, encodes
the image as a JPEG image to display it in a web browser. If you are using servlets, just add
the appropriate import statement for an ImageJ package to your servlet and include ij. jar
in the classpath. In JSP applications, ImageJ can either be used “behind the curtain” inside
Java Beans (where you just import it as in any other kind of Java class) or directly in a JSP
page using e. g.

<\%\@ page import="ij.process.*" \%>

Writing ImageJ Plugins—A Tutorial 52

Version 1.71

As display format you often have only the choice between JPEG, GIF or PNG in web
applications. The output will not be written to a file but to the response stream of the
servlet/JSP. You can use Imagel’s file encoders for this purpose or use e.g. Sun’s JPEG
encoder. The following servlet sample code illustrates how to load a file (in any format that
can be read by ImageJ) and send it as a JPEG stream to the user’s browser. The name of

the image will be specified as parameter image of a GET request. A call of the servlet could
look like

http://wuw.myserver.com/servlet/ShowImage?image=/images/picture.tif

We assume in this example that the image loaded is a RGB color image. Here is the
complete code (requires Java 2):

First we import the servlet packages, the AWT image subpackage, the required ImagelJ
packages and the Sun JPEG encoder:

import javax.servlet.x;

import javax.servlet.http.x;
import java.io.*;

import java.awt.image.*;

import ij.*;

import ij.io.x*;

import ij.process.x*;

import com.sun.image.codec. jpeg.*;

public class ShowImage extends HttpServlet

We implement the method for handling a GET request, which gets the HTTP request
and response as parameters. First we read the parameter containing the image URL from the
request and open the ImageJ using ImageJ’s Opener. As we assumed to open a color image,
we can now get its ColorProcessor, create a new BufferedImage and store the image’s pixel
array in it.

public void doGet (HttpServletRequest request,
HttpServletResponse response)
throws ServletException, I0Exception {

String inputURL=request.getParameter("image") ;
Opener opener = new Opener();
ImagePlus image = opener.openURL (inputURL) ;

ColorProcessor cp = (ColorProcessor) image.getProcessor();

int[] pixels = (int[]) cp.getPixels();

BufferedImage bimg = new BufferedImage(cp.getWidth(),
cp.getHeight (), BufferedImage.TYPE_INT_RGB);

bimg.setRGB(0,0,cp.getWidth(),cp.getHeight (),
pixels,0,cp.getWidth());

As we want to return a JPEG image, we set the appropriate MIME type for the HTTP
response. We get the response’s binary output stream and open a JPEG encoder on it. To get

Writing ImageJ Plugins—A Tutorial 53

Version 1.71

best quality, we disable subsampling and set the JPEG quality parameters to the maximum.
Finally we encode the image with the specified parameters and clean up by flushing and
closing the output stream.

response.setContentType ("image/jpeg") ;

OutputStream outstr = response.getOutputStream() ;
JPEGImageEncoder jie = JPEGCodec.createJPEGEncoder (outstr);

JPEGEncodeParam jep = jie.getDefaultJPEGEncodeParam(bimg) ;
jep.setQuality(1.0f,false);
jep.setHorizontalSubsampling(0,1);
jep.setHorizontalSubsampling(1,1);
jep.setHorizontalSubsampling(2,1);
jep.setVerticalSubsampling(0,1);
jep.setVerticalSubsampling(1,1);
jep.setVerticalSubsampling(2,1);
jie.encode(bimg, jep) ;
outstr.flush();

outstr.close();

A big advantage of JSP is the separation of implementation (which can be wrapped
into Java Beans) and the page layout. A sample code that shows how a JSP based image
processing system could look like, can be downloaded from http://www.fh-hagenberg.at/mtd/
depot/imaging/imagej. It consists of a Java Bean that wraps the whole ImageJ functionality
and also supports dynamic loading of user plugins (although plugins must not require user
input except for the argument string).

8 Troubleshooting

8.1 ImageJ runs out of memory.

This can be solved by making more memory available to the Java Runtime Environment.
As virtual memory is significantly slower than real RAM, you should try to assign not more
than 2/3 of your real RAM to the Java virtual machine.

If you are using Mac OS X or a Windows version installed with the installer, you can
set the maximum memory using the “Edit/Options/Memory” menu command. The changes
will take effect after you restart ImagelJ.

Otherwise change the -mx option passed to the Java virtual machine, e.g. —xm256m to set
the memory to 256MB. The operating system specific instructions for setting the memory
size can be found at http://rsb.info.nih.gov/ij/install.

8.2 A plugin is not displayed in ImageJ’s plugins menu.
This may have several reasons:

e The plugins name does not contain an underscore.

Writing ImageJ Plugins—A Tutorial 54

Version 1.71

e The plugin may not be in the plugin directory or one of its subdirectories.

e If you did not compile the plugin inside ImageJ, make sure that the compilation was
successful and a class file has been created.

8.3 When you call the “Plugins/Compile and Run ...” menu, you get the
message: “This JVM appears not to include the javac compiler. [...]”

If you are using Mac OS, you need the MRJ SDK in addition to the MRJ (Macintosh Runtime
for Java).

If you experience this problem when using the Windows or Linux distribution including a
Java compiler, make sure

e that the tools library (tools11.jar if you are using JRE/JDK 1.1, tools. jar if you
are using Java 2 (JRE/JDK 1.2 or higher)) is in the classpath, and

e that you are using the right Java environment if you have more than one installed.
Specify the path to the Java Virtual Machine you want to use explicitly.

8.4 ImageJ throws an exception when you use it in a web application
running on a Unix/Linux server.

Many ImageJ classes are based on Java AW'T. But the initialization of AWT will fail—usually
during initializing the default ttolkit, which is required for loading images via AWT—on
“headless” servers, i.e. servers with no Xserver installed. With JDK 1.4 or later, you can use
the headless option

java -cp ij.jar;. -Djava.awt.headless=true ij.ImagelJ

9 Frequently Asked Questions

9.1 How to change the URL for the sample images (menu “File/Open
Samples”) in order to access local copies of the files?

The URL is set using the images.location value in the file IJ Props.txt which is located
in ij.jar. The URL must include a trailing /.

You can edit ij.jar with a program that reads ZIP files. Some of them (e.g. WinZip)
support editing a file from the archive directly and will update the archive after closing the
modified file. Otherwise it is necessary to extract IJ_Props.txt from the archive and add it
again after editing.

Example:

images.location=http://www.mymirror.com/ij/images/

9.2 How to include user plugins when running ImageJ as applet?

When running ImageJ as an unsigned applet, the class loader that loads user plugins will not
work as the plugins folder is not in the code base. Add a package statement such as package
ij.plugins to the plugin code and insert the compiled class into ij.jar (be sure to include
it into the right folder). To make the plugin appear in the plugins menu add a line like

Writing ImageJ Plugins—A Tutorial 55

Version 1.71

plug-in08="Plugin",ij.plugin.Plugin_

to the plugins section in IJ_Props.txt, which is also located in ij. jar.

You can edit ij.jar with a program that reads ZIP files. Some of them (e.g. WinZip)
support editing a file from the archive directly and will update the archive after closing the
modified file. Otherwise it is necessary to extract IJ_Props.txt from the archive and add it
again after editing.

10 Further Resources

10.1 API Documentation, Source Code

The ImageJ API documentation is available online at
http://rsb.info.nih.gov/ij/developer/api/.

The browsable source code is available at http://rsb.info.nih.gov/ij/developer/source.
API documentation and source code are available for download at
http://rsb.info.nih.gov/ij/download.html.

10.2 Plugins Page

Many ImageJ plugins (with source code) are available at
http://rsb.info.nih.gov/ij/plugins.

10.3 ImageJ Mailing List

For questions concerning ImageJ that are not answered by the documentation consult the
ImageJ mailing list.

A complete archive can be found at http://list.nih.gov/archives/imagej.html.

For information about subscribing see http://rsb.info.nih.gov/ij/list.html.

10.4 Java Resources

10.4.1 Online Resources

Java API documentation and many tutorials are available from Sun Microsystems at
http://java.sun.com/. Other online Java resources are:

e A comprehensive collection of Java resources (books, tutorials, FAQs, tools):
http://www.apl.jhu.edu/~hall /java.

O'Reilly Java Center: http://java.oreilly.com

JavaWorld: http://www.javaworld.com

DocJava: http://www.DocJava.com

java.net: http://www.java.net

Café au Lait: http://www.ibiblio.org/javafaq

Writing ImageJ Plugins—A Tutorial 56

Version 1.71

10.4.2 Books

Java in a Nutshell
by David Flanagan
1252 pages, 5" edition (March 2005)
O’Reilly & Associates
ISBN: 0-596-00773-6

Java Examples in a Nutshell
by David Flanagan
720 pages, 3™ edition (January 2004)
O’Reilly & Associates
ISBN: 0-596-00620-9

Learning Java
by Patrick Niemeyer and Jonathan Knudsen
724 pages, 15 edition (May 2000)
O’Reilly & Associates
ISBN: 1-56592-718-4

The Sun Java Series
Detailed information can be found at http://java.sun.com/docs/books.

10.5 Image Processing Resources

Image Processing—An Introduction with Java and ImagelJ
(Digitale Bildverarbeitung—Eine Einfithrung mit Java und ImageJ)
by Wilhelm Burger and Mark J. Burge
274 revised edition 2006 (in German, the English edition is scheduled to appear in
autumn 2006)
Springer-Verlag
ISBN 3-540-30940-3
This introductory textbook covers fundamental techniques in image processing in a
practical, understandable fashion, without neglecting important formal precision and
algorithmic details. Based on the freely available image processing software ImagelJ,
the book tries to smooth the path between initial ideas, mathematical specification,
and practical implementation.

Writing ImageJ Plugins—A Tutorial 57

